Modelling 1 SUMMER TERM 2020

Interpolation

Interpolation

Interpolation Problem

Interpolation with a "Linear Ansatz"

- Given a set of points
- Choose basis functions
 - Properties of basis determine result
- Find a linear combination that interpolates

General Formulation

Settings:

■ Domain $\Omega \subseteq \mathbb{R}^d$. Mapping:

$$f:\Omega\to\mathbb{R}$$

Basis:

$$B = \{b_1, \dots, b_n\}, b_i : \Omega \to \mathbb{R}$$

f as linear combination of basis functions:

$$f_{\lambda} = \sum_{i=1}^{n} \lambda_i b_i$$

- Function values: $\{(\mathbf{x}_1, \mathbf{y}_1), ..., (\mathbf{x}_n, \mathbf{y}_n)\} \subset \mathbb{R}^d \times \mathbb{R}$
- Find λ such that: $\forall i = 1, ..., n$: $f_{\lambda}(\mathbf{x}_i) = y_i$

1D Example

 $f \colon \mathbb{R} \to \mathbb{R}$

Solving the Interpolation Problem

Solution: linear system of equations

• Evaluate basis functions at points \mathbf{x}_i :

$$\forall i = 1, ..., n: \sum_{i=1}^{d} \lambda_i b_i (\mathbf{x}_i) = \mathbf{y}_i$$

Matrix form:

$$\begin{pmatrix} b_1(\mathbf{x}_1) & \cdots & b_n(\mathbf{x}_1) \\ \vdots & & \vdots \\ b_1(\mathbf{x}_n) & \cdots & b_n(\mathbf{x}_n) \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} = \begin{pmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_n \end{pmatrix}$$

Illustration

Illustration

Example

Example: Polynomial Interpolation

- Monomial basis $B = \{1, x, x^2, x^3, ..., x^{n-1}\}$
- Linear system to solve:

$$\begin{pmatrix} 1 & x_1 & \cdots & x_1^{n-1} \\ 1 & x_2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \cdots & x_n^{n-1} \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

"Vandermonde Matrix"

Example with Numbers

Example with numbers

- Quadratic monomial basis $B = \{1, x, x^2\}$
- Function values: {(0,2), (1,0), (2,3)}
- Linear system to solve:

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix}$$

• Result: $\lambda_1 = 2$, $\lambda_2 = -\frac{9}{2}$, $\lambda_3 = \frac{5}{2}$

Condition Number...

Monomial interpolation ill conditioned

- Vandermonde matrix, equidistant x_i
- Condition number grows exponentially with n

Why is that?

Monomial Basis:

- Increasingly indistinguishable
- Difference in growth rate

Cancellation

Monomials:

- From left to right in xdirection...
- First 1 dominates
- Then x grows faster
- Then x² grows faster
- Then x³ grows faster
- •

The Cure...

This problem can be fixed:

- Orthogonal polynomial basis
- E.g.: Gram-Schmidt orthogonalization
- Legendre polynomials orthonormal on [-1..1]

However...

This does not fix all problems:

- Polynomial interpolation is instable
 - "Runge's phenomenon"
 - Uniformly spaced control points
 - Oscillating behavior

- Smooth functions (C⁰): uniform convergence with sequence of polynomals
- Need to chosen polynomials very carefully
- Not very useful in practice

Runge's Phenomenon

Generalizations

Solving the Interpolation Problem

Multi-Dimensional output

For every target coordinate k:

$$\forall j = 1, \dots, n: \sum_{i=1}^{d} \lambda_i^{(k)} b_i^{(k)} \left(\mathbf{x}_j \right) = \mathbf{y}_j^{(k)}$$

 Solve a separate interpolation problem for each target dimension

Differential / Integral Constraints

Taking linear operators of target function

Consider linear operator L

$$Lf(\mathbf{x}_j) = \mathbf{y}_j \rightarrow \sum_{i=1}^n \lambda_i (Lb_i)(\mathbf{x}_j) = \mathbf{y}_j$$

- Still a linear system
 - Just apply L to basis functions
- Differential & integral linear operators

$$\frac{d}{dx}$$
, $\frac{\partial}{\partial_x}$, $\Delta = \frac{\partial^2}{\partial_x^2} + \frac{\partial^2}{\partial_y^2}$, $f \to \int_a^b f(x)w(x)dx$,...